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An exact aolotion of the problem of a field of an infinite series of soarces in the presence 
of filtration with a limit gradient is derived by the method of integral transformations. The 
stagnation zone boundary is determined, and the results are compared with those of the 
approximate solation. 

1. It was shown in paper [I] that a series of symmetrical filtration problems with limit 
gradients is reduced by meansof hodograph trausformation to the determination of the 
stream function tjJ a8 a solution of the linear equation 

where w is the filtration rate modalas, 8 its angle to the 
r-axis, and h the characteristic initial rate proportional to the 
initial gradient magnitude at which motion begins. 

In these problems Eq. (1.1) has to be solved in the semi- 
- infinite band 0 < 6 < go, 0 < w < 00 
X 

sectioned along segment 
0 < w < 11 , or half-line a < w < m, 8 = 8, with specified 

boundary values for $ along the whole boandary. The simplest 
limit cases of a = 0 were considered in paper [l]; the derivation 
of a solution for ok0 is generally not possible. In the following 
a particular case in which an exact solation is comparatively 
easily derived is considered. In the physical plane it corresponds 
to the flow from an infinite row of soarces of intensity q equally 
spaced along a straight line, or to, what is equivalent a flow 

from a source located between two impermeable boundaries (Fig. 1). The corresponding 
picture in the u&plane is shown on Fig. 2, a = % By virtae of the obvious 
symmetry of the problem along half-line 
hence the problem ander consideration first boundary value problem 

band -0 < w < DO, 0 with conditions 

9 0) = 9 (0, 0) = 0 

* (** ‘& n, = o (0 < W < a), ‘$ (w, ‘/,x) zz Q = If4 q (a < w < q (1.2) 

2. It is convenient for solving this problem, as well as for analydng other problems 
related to Eq. (1.X), to resort to an integral transformation with respect to variable w. For 
this it is necessary to establish formulas for the integral expansion with respect to 
eigenfanctions of Eq. 

u (u + 1)Y” + (u - l)Y’ + aY = 0 (2.1) 
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WA ;A A 

k?l 
The geaezal method of expansion derivation is given in 

Tit&marsh’s book [2] where (in Chapter 4) the expansion derivation 

IE 
a --0 0’ 

for the hypergeometric equation 

24 (u + 1)Y” + [y + (5 - 1) ulY’ + A Y = 0 (2.2) 

for y > 2 is analyzed in detail. In the case of Eq. (2.1) y = - 1 and 
the Tit&marsh formulas are not directly applicable. We may however 

0 
cc’ 8 

I/z% x 
repeat more or less literally the reasoning given in [2], taking into 
account that in this case oat of the two independent solutions of 

Eq. (2.1) that which conforms to the required behavior in the 
Fig. 2 neighborhood of zero is 

Ya=u’F(2+i v/a, ;2--iv/a, 3, -u) (2.3) 

Here F is the hypergeometric function symbol, VT-= 1, and the section for the root is 
taken along the negative semiaxis CL As the result we obtain 

g (u) = l/&Ta (1 + a) cth (J-C v/cl) F (2 + i I% 2 - i I/& 3, - 4 g* (a) dz 

0 

The transform g* (u) is defined by Expression 

00 

P (a) = 
s (f+u)F(a, u)g(u)du, F(a, u)=F(2+i I/&, 2--ifi, 3, -u) 
0 

3. We assume u = w/h in Eq. (1.1) which then becohes 

(2.4) 

(2.5) 

(3.1) 

and apply to it transformation (2.5), i.e. multiply it by (1 + u) F (CL, v), and then integrate 
with respect to u from 0 to 00. Integrating by parts and assuming the contribution of terms 
outside of the integral to be nil. we obtain 

d29* (4 0) 
de= - a$* (a, 0) = - 2Y (0, 0) (3.2) 

In this case the right-hand side of Eq. (3.2) vanishes by virtue of the condition u = 0, 
and the solution which satisfies condition for 8 = 0 is of the form 

$* (a, 0) = A (a) sh J&O (3.3) 
Applying transformation (2.5) to the boundary condition (1.2) with 8 = % R, and using 

the conversion formula (2.4), we obtain a solution of the form 

(3.4) 

$(u, e,=FJ 
O3 a(f+a)cthn I&sh)/aO 

a, 

sh l/z JC v; 
F (a, u) 

s 
(1 _t v) F (a, T) dv da, a0 = a/h 

0 a1 

We note that by virtue of the following identity (see, e.g. [3 and 41) 

F (a, u) = uezsi va r (3) r (- 2i JG ) 
r (I- i I/q r (2 - i Jr/a) F+ (- Vu) + 

+ .-2+i va r (3) r (2i V/a) 

r (I+ i vi) r (2 + i l/G) F-(- I”) 
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F, (--i/u) = F (25 i Jfii, -& i vii, 1& 2i J&i, - f/u) (3.5) 

F (a, u) = It? (clu-i FG + c2ui “;) (f + 0 (1)) for Y 4 oa 

Hence the inner integral in (3.4) is convergent when a& 0, while for CL = 0 it has e 
root singularity. 

4. Using solution (3.4) we shall determine the stagnation zone boundary form (image 
of segment w = 0, 0 < 8 < % R). For this it is necessary according to [I] to calculate 
magnitude 

From f3.4) wehave 

In order to transform the integral with respect to a we shall use reIationship (3.5). 
The intogrand of (4.2) will be split into the sum of two terms, one of which is aualytical 
and decreases exponentially in the upper half-plane with increasing 1~1, while the other 
doea so in the lower half-plane, (This can be ascertained with the aid of Watson’s formulas 
in Section 2 of reference book [4’1). 

Integral (4.2) is thus split into two; the integration path of the first one may be dis- 
torted along the negative real semiaxis cx into the cross section upper edge which is 
penetrated from right to left, bypassing in the upper half-plane points a = - n’ along in- 
finitely small semicircles foudine r+). The secand integral may be similarily computed 
along the cross sectian lower edge bypassing points CC = - R’ from below along small semi- 
circles (outline r-1, .9b that 

We now note that the integrand af the first integral considered as a function of a is 
analytical in theupper half-plane, while that of the second integral is analytical in the 
lower one, and that along segments (- n’, - (n - 1)‘) of the real axis the two coincide by 
virtue of condition \Ta = i mabove, and G= - i m below the latter. Hence, by virtue 
of the principle of snelytic exteusion, these form an analytical fanctione (CC), which may 
possibly have points CL= - n2 as its poles. Thus we have 

x 03 
Q 

=z 
f 

E (a) da try= r,+ r-1 
r 

(G.S), 

Ry virtne of the above the integrals cancel each other out along segments 
C-n** - (n - f?f end Expression f4+3) is reduced to the sum of integrals along the 
infinitely small circles, bypassing points CL = - s2. IWe note that the singular points (poles) 
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of fan&m F* am cmceUedby ~XOIJ of the hyperbolic cotangent, hence their contribution 
is nfl). The cattribation of those of the u = - n* pointe which correspond to odd n = 2m + 1 
is almo nil. At such points we have, in fact, for m = 0 a pole of the first order, and poles 

at I’ (-2ivq , end r (1 -a ivaT, hers (1 + CC) also vanishee, hence a singularity is 
ahrent. 

An extraneous pole appears in the denominator when m f 0, so that again there is no 
singularity. We shall now consider points n = 2m. When m = 0 the inner integral ie of the 
order of 

co 

f 
-l+’ u ‘t/ii du = 0 { I/ y’jii$ 

a, 

The expression in front of it is of the order of unity, hence t&e singularity at point 
vg is integrable, and its contribution nil. If m # 0, then 6 H nl/~, vanishbd, the pole has 
a cotangent and all of the gamma-functions, therefore the complete intogrand ham poles 
of the first order at points u = - (2m)r. After computation we obtain 

X s (1 -I- v) vezB2”F (2 + 2m, 2m, 1+ km, - I,Jv) dv sin 2 m0 (4 -4) 
a, 

Using, asin [I], the Euler representation for the hypergeometric function, we can 
express (4.4) in the form 

For the coordinates of the stagnation aone bonndary we have 

3: (cp) + iy (cp) = [ efex (0) d8 
0 

Substituting (4.5) into (4.6) and integrating with respect to 8, we obtain 

(4.6) 

1 vcosg, 
+ 4y3 arctg i _ v sin cp 

1 
-- 2~s arctg v - 

A(v, fp)cosrp-B(v, cp)sincp 
2va (1 + 2ve cos 2tp + yQ)S + ( 

1+7v4 i I$-2vSincp+ vz 
+ 2v”(1+~~)~ +8YSIn 1-2vsincp+v”-i 

A(v, cp)sincp+B(v, cp)coscp 
2v” (1 + 2v’ co5 2Cp + v”)S 1 

(4.7) 

Here 
A (v, q) = 1 + 3v2 cos 2~ + iOv* cos 4rp + 21~3 cos 2cp + 

+ v6 cos 6q, + 21~8 -j- 7~10 cos 2cp 

B (v, Cp) = v2 sin 2rp - 3v* sin 2p, - v6 sin 6p, - 4vs sin 4q - 3~10 sin 2rp 

Expression (4.7) defines the boundary conditions to within the constants which are 
easily defined by &sing into account conditions z (I/% JC) = L, y (0) = 0. 
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Outline of the stagnation zone boundary computed Formula (4.7) shown on 
3, where figures adjacent curves denote 

of parameter 

5. It important in to know addition to 
disposition of zones the of their 

on the drop between slot and 
layer distant 

We select the y-axis 1) points <( L 
yl >> In accordance the law filtration we 

hence 

g = - (w + h) 

H (~1) - H (yz) = h (YZ - ~1) + 5 w dy 
II, 

(5.11 

(5.21 

Fig. 3 
The solution of this problem for x = 0 is well 

known (see, e.g., [S] 1. In particular, the filtration rate 
distribution along the y-axis is defined by Expression 

Q flY 
w” (0, y) = x cth z 

Using (5.31 and disregarding small magnitude we obtain from (5.21 

M 

H(yl)-H(Yz)=h(Ys-yl)+ A$,+&_ $&),, 
0 

641 

?A 

HD=$ 
s 

ZY cth 2L dy (5.51 

Here ffg is the pressure drop corresponding to the linear law of filtration, h (yr - yt) 
represent an additional pressure loss allied to the nonlinearity of the filtration law. Ad- 
ditions of this kind would be obtained in the case of flows from a straight line manifold. 
The integral term of (5.41 takes into acconnt variation of the pressure loss resulting from 
the change of the flow pattern under the influence of the flow nonlinearity. In its computa- 
tion the relationship between w and y is defined by Expression [I] 

co 

aH dw dw 
?/=- s I co W 

aw k’/*x w3_h = - s I 3% b-‘/,x -F 
11) W 

(5.6) 

The expression of derivative a$/% is obtained by differentiation (3.41, and in the 
general case is fairly complicated. It can be simplified for large and small valaes of 
o0 = Q/U. 

6. We shall now consider the limit case when o = 0. As was shown in [1] the solution 
yields in this limit case the lower estimate for the stagnation zone dimensions, it is 
therefore of interest to compare it with the solution derived above for small o # 0. The 
required solution may be taken directly from paper [I]. 
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We have 

II = (z/n)Qe + yt* 

(In the correeponding formula (4.23) of paper [l] the exponent in denom~ator had been 
inadvertently omitted, and the numerator incorrectly written). Assuming here 8, = ?&r we 
calculate 

co O” 
1 5O=- s W’k 

1 
0) 1 1 

It ae 
du 8Q 

e=0 73 - nh S11 TM- ,I + lJ s (btt)v(3-~*)~~ du 
(1 + v213 1 -F (6.3) 

0 0 0 

The Iaet integral may be integrated by parts, followed by integration with respect to 
u and then the order of integration changed which allows the finding of 

1 
TAX" 

SI 

v[6-3v-l6v*-2~r+2~+V6] 1 -VI Zvlnv 
16Q= (1 + v”)’ 1I (i$-- 

- C&=0.45 
(1. + v)3 II (6.4) 

0 

In order to determine- the form of the stagnation zone we compute 

9 0 
$- 8sinftcos68 -16sin0cos88 GhXo(e) 1 

From this we derive the expression for the stagnation zone boundary 

x (3) f iy(3)= x0 -/- ‘i xo (0) eio d0 
0 

or 

(6.5) 

(6.6) 

as 

03 

&? 

ar 

ro 

Fig. 4 

The stagnation zone limit pattern defined by 
Expressions (6.5) and (6.6) is shown on Fig. 4, on which 
the curvea of Fig. 3 have also been drawn with mag- 
nitude Q/x as the scale (E = nhx/ (24 Q), 
rl = nhy/ (24 Q)) for the eahe of comparison. As 
expected, the limit solution (a0 = 0) yielde the lower 
estimate of the stagnation zone dimenaions, while for 
oa = 0.1 this estimate is already close to the solution. 

7; An approximate method was proposed in paper 
[6] for solving the problem of filtration with an initial 
gradient which amounts to the assumption that motion 
in the flow area at a velocity exceeding the stipulated 
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value of A confonua to the Darcy law, while the mtagnation zone boundaries are found aa 
l treamlinea along which the filtration rate ia equal to A. Thus atated the problem ia redsced 
to the l olotion of the Laplace equation in the area with au unknown boundary, and ia readily 
l olvad by methoda known in the theory of jeta. 

In the cue here considered it ia necessary to find a solution of the Laplace equation 
for the stream function t/ in the area EAECD (Fig. l), having aatiafied the complementary 
condition that w I h along EC. The required expreaaion binding I by the potential IF is of 
the form 

dz 

dW- i(ibTT*) [ VI- exP (- nWIQ) - vaz - exp (- d-‘/Q)] 

a = (a08 - 1)/(ao2 + I) W=H+i$, z=z+iy) (7.1) 

Integrating and aaauming that $ I 0, we obtain the looked for expression of the 
stagnation zone boundary. If angle 8 between the boundary and the x-axia is taken aa a 
paraateter then 

z oz*- 1 --- 2&J co9 0 
L n arctg - - agz - 1 -+ co9 e + 

+ i [kj$G* 
1 

+2aosin8+aoZ 2 
1 - 2ao sin 8 + aa” -7 aa 

sin9 1 (7.2) 

It will be readily aeen that the obtained solution holda for sufficiently great ua only. 
In fact, when oa < 1 the atream velocity at infMity is lower than A, which ia contrary to 
the model here considered; for a, clone to unity the stagnation zone tip receada arbitrarily 
for along the y-axia. Boundary coordinates\ calculated by means of Formula (7.2) for 
or - 2 are ahown by dota on Fig. 3. It ia evident that the result differs considerably from 
that of the exact aolution. 

Author expreaaea hia appreciation to V.N. Teliianta and R.T. Pozvonkova who had 
organized the comptationa to Formula (4.7), and T.N. Ericheva and A.E. Segalov for their 
help in this work. 
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