ON ONE PROBLEM OF FILTRATION WITH A LIMIT GRADIENT
ALLOWING AN EXACT SOLUTION
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An exact solution of the problem of a field of an infinite series of sources in the presence
of filtration with a limit gradient is derived by the method of integral transformations. The
stagnation zone boundary is determined, and the results are compared with those of the
approximate solution.

1. It was shown in paper {1] that a series of symmetrical filtration problems with limit
gradients is reduced by means of hodograph transformation to the detemination of the
stream function ¢/ as a solution of the linear equation
2 gle @ o 8

’ w(w-i-l)w—i—(w—l)w—l-—-a:g =0 {14)
¢ | ¢ where w is the filtration rate modulus, @ its angle to the

i x-axis, and A the characteristic initial rate proportional to the
initial gradient magnitude at which motion begins.

P ‘A 8 In these problems Eq. (1.1) has to be solved in the semi-
- + AN S infinite band 0 <@ <6, 0 <w <o sectioned along segment
7 x 0< w<a, orhalf-line a <w <o, F=0, with specified

l boundary values for {7 along the whole boundary. The simplest
limit cases of a = 0 were considered in paper [1]; the derivation
of a solution for 6 40 is generally not possible. In the following
a particular case in which an exact solution is comparatively
! easily derived is considered. In the physical plane it corresponds
Fig. 1 to the flow from an infinite row of sources of intensity ¢ equally
spaced along a straight line, orto, what is equivalent a flow
from a source located between two impermeable boundaries (Fig. 1), The corresponding
picture in the w@-plane is shown on Fig, 2, where a = Y% ¢/L. By virtue of the obvious
symmetry of the problem the stream function venishes along half-line a <w <o, 0 =Y%n,
hence the problem under consideration is equivalent to the first boundary value problem
for the semi-infinite band 0 <w < o0, 0 <O <% m with conditions

$Ylw. 6) =, 0) =0
‘p(w,l/z“)=0(0<w<“)»‘P(W:I/z“)=()=1/49(“<w<°<) (1.2)

2. It is convenient for solving this problem, as well as for analyzing other problems
related to Eq. (1.1), to resort to an integral transformation with respect to variable w. For
this it is necessary to establish formulas for the integral expansion with respect to
eigenfunctions of Eq.

@+ )Y + (u—1)Y +a¥ =0 .0
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The general method of expansion derivation is given in
Titchmarah’s book [2] where (in Chapter 4) the expansion derivation
for the hypergeometric equation

u@+ DY + 4+ C—D) u]Y +AY =0  (2.2)

for y > 2 is analyzed in detail. In the case of Eq. (2.1)Y =~ 1 and
the Titchmarsh formulas are not directly applicable. We may however
repeat more or less literally the reasoning given in [2], taking into
account that in this case out of the two independent solutions of
Eq. (2.1) that which conforms to the required behavior in the
neighborhood of zero is

Ye=uF2+iVa, 2—iVa, 3, —u) (2.3)

Here F is the hypergeometric function symbol, ¥'1 =1, and the section for the root is
taken along the negative semiaxis &. As the result we obtain

o0

g(u)=1/4u”Sa(1+a)cth(n Vo Fe+iVae, 2—iVa, 3, —u)g*@)da 24

0

The transform g* (@) is defined by Expression

g’(a)=S(1+u)F(a, wgudu, F@,u)=FQ2+iVa,2—iVe, 3, —u) (2.5
[

3. We assume u = w/A in Eq. (1.1) which then becomes

s o
u(u 1) 33+(u—1)%—§——aeiz=0 3:1)

and apply to it transformation (2.5), i.e. multiply it by (1 + u) F (a, u), and then integrate
with respect to u from 0 to oo, Integrating by parts and assuming the contribution of terms
outside of the integral to be nil, we obtain

P g @ O=—200,0) (32)

In this case the right-hand side of Eq. (3.2) vanishes by virtue of the condition u = 0,
and the solution which satisfies condition for @ =0 is of the form

P* (2, 6) = 4 (@) sh Vab (3.3)

Applying transformation (2.5) to the boundary condition (1.2) with @ =% m, and using
the conversion formula (2.4}, we obtain a solution of the form

(3.4)
(o2 [ee)
Qu  a(d-+a)cthn Vash Vao
Y(u, 0)="7 (5 sh%nl% Ve F(a, u)§(1+v)F(a, v)dv da, ag=a/\

We note that by virtue of the following identity (see, e.g. [3 and 4])

_iVa__ L@ (—2Va)
Fla,w=u TA—iVa)T2—:Va
iV re)reivae

Tra+ivVare+ivae

Fo(—1/u)+

F_(—1/u)
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F (—iwy=F@+iVa, +iVa, 1+2 Va, —1/u) (3.5)
Fa, w=uCu Y 4 Cu V& (1 £ o(1) for w00

Hence the inner integral in (3.4) is convergent when a £ 0, while for ¢ =0 it has &
root singularity.

4. Using solution (3.4) we shall determine the stagnation zone boundary form {image
of segment w =0, 0 <O <% m). For this it is necessary according to {1] to calcnlate
magnitude

o _ 4,1y .

45.4F

From (3.4) wehave

X(e)= 2% sh i, n V& (4.2)

Cad haVash®Va) ¢
a g
‘Q_Y (1 a)cthax YV ash (@ Q)S(I“i'l‘)F(Iv v)dv da

('.)l as

In order to transform the integral with respect to a we shall use relationship (3.5).

The integrand of (4.2) will be split into the sum of two terms, one of which is analytical
and decreases exponentially in the upper half-plane with increasing |a|, while the other
does so in the lower half-plane. (This can be ascertained with the aid of Watson’s formulas
in Section 2 of reference book [4]).

Integral (4.2) is thus split into two; the integration path of the first one may be dis-
torted along the negative real semiaxis & into the cross section upper edge which is
penetrated from right to left, bypassing in the upper half-plane points & = ~ n* along in-
finitely small semicircles (outline P+). The second integral may be similarily computed
along the cross section lower edge bypassing points @ = — n? from below along small semi-
circles (outline ["_), so that

_ Q (a(l--ojcthnVasho Va r@E)reve ,
"(e)_—%r shifpn Va Fr@+iVar@-+iva) 8

+
a(l+a)cthx YVash®Va)
shif,n Va

X S(i + v) F_{— 1/r) dvda -} Tz% S «
bt -

r@)r(—2ya)
“TA—iVare—ive

5(1 L2} F, (— 1/} dvda

We now note that the integrand of the first integral considered as a function of a is
analytical in theupper half-plane, while thatof the second integral is analytical in the
lower one, and that along segments (— n?, — (n = 1)?) of the real axis the two coincide by
virtue of condition \/a =i \/'rc_xrabove, and \/'_z - i\/‘?ﬂ below the latter. Hence, by virtue
of the principle of analytic extension, these form an analytical function £ (@), which may
possibly have points .=~ n? as its poles. Thus we have

Q (o
X%{0) = Tz'}':S E (a) da '=T,+TI) (+.3)
r

By virtue of the above the integrals cancel each other out along segments
(—n*, =~ (n— 1)} and Expression (4.3) is reduced to the sum of integrals along the
infinitely small circles, bypassing points @ = ~ n?, (We note that the singular points (poles)
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of function F, are cancelled by zeros of the hyperbolic cotangent, hence their contribution
is nil). The contribution of those of the & = — n3? points which correspond to odd n =2m + 1
is also nil. At such points we have, in fact, for m = 0 a pole of the first order, and poles
atT (—2iVa) ,and I' (1 — i} @); here (1 + ) also vanishes, hence a singularity is
absent,

An extraneous pole appears in the denominator when m # 0, so that again there is no
singularity. We shall now consider points n = 2m. When m =0 the inner integral is of the

order of
[s o]

S Wi Va g, ou/ Vm)

ay

__ The expression in front of it is of the order of unity, hence the singnlerity at point
'Pfcc is integrable, and its contribution nil. If m # 0, then A ' ny-a, vanished, the pole has
a cotangent and all of the gamma-functions, therefore the complete integrand has poles
of the first order at points & = — (2m)?, After computation we obtain

x(0)= 16Q i (—1)™ m? @m— 1) @m A1)

4m|

L7y

m==]

[ee]
X S (1 -+ 2) ™ M™F (24 2m, 2m, 1 + 4m, — 1/0) do sin 2 8 )
a,

Using, asin [1], the Euler representation for the hypergeometric function, we can
express (4.4) in the form

o 1
16Q C1+u 8 %0 (1 — 8y32 | 3uaetity A—10
X(e)—-* n}v J u? du asl Im (t+ u)a (1 + ‘v’ezie)'i dt (‘Vz """“—u + 7 ) (4-5)
For the coordinates of the stagnation zone boundary we have

¢

= (@) + iy (@) = { ¢ () a0 “.6)

0

Substituting (4.5) into (4.6} and integrating with respect to 8, we obtain

o0 1
. 8Q t1+=u t3dt 1 v Co;
2@ +iv@= i | i § w2 erle T sy +

ae i

1 veos @ i A(v, @)cos@p— B(v, @)sing
+ g arctg g —vsing  2v3 arctg v — 2vZ (1 + 2vicos 2¢ - V)3 + .
n 1 Tvt i 1 14-2vsing -+  A(v, @)sin@ - B(v, p)cos¢
ATV T8 BT ovsing - v ' 2vE(1 - 2vicos 2@ - VAP

%7

H
ere A (v, 9) =1+ 3% cos 29 - 10v* cos 49 + 21v® cos 2¢ -

-+ v cos 6¢ -+ 24v8 - w10 ¢cos 29

B (v, @)= v%sin 29 — 3v®sin 2¢p — v8 sin 69 — 4v8 sin 49 — 3v!0 gin 2¢

Expression (4.7) defines the boundary conditions to within the constants which are
easily defined by taking into account conditions z (3an) = L, y (0} = 0.
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Outline of the stagnation zone boundary computed from Formula (4.7) is shown on
Fig. 3, where the figures adjacent to curves denote
values of parameter a,.

5. It is important in practice to know in addition to
the disposition of stagnation zones the effect of their
onset on the pressure drop between the slot and the
layer distant parts.

We select on the y-axis (Fig. 1) points y, K L and
y2 > L. In accordance with the law of filtration we have

oH
’T’fy_:—(w“{’“}u) (5.1)
hence Ve
H)— HE)=r—m+ \wdy (53
(21

The solution of this problem for A = 0 is well
Fig. 3 known (see, e.g., [5]). In particular, the filtration rate
distribution along the y-axis is defined by Expression

o Ty
w® (0, y) = —%— cth S (5.3)

Using (5.3) and disregarding small magnitude we obtain from (5.2)

H @)~ H (v = (s — ) + AHD+S(w——Q—cth ) 64
Y

Q
H ——Z—Scth 5T (5.5)

Y1

Here Hp is the pressure drop corresponding to the linear law of filtration, A (y; — v,)
represent an additional pressure loss allied to the nonlinearity of the filtration law, Ad-
ditions of this kind would be obtained in the case of flows from a straight line manifold.
The integral term of (5.4) takes into account variation of the pressure loss resulting from
the change of the flow pattern under the influence of the flow nonlinearity. In its computa-
tion the relationship between w and y is defined by Expression (1]

¢ oH l dw T op dw
S W |s=tfn w A = S 80 |o=tfn wE (5.6)
w

w
QLS w o0

The expression of derivative 3//30 is obtained by differentiation (3.4), and in the
general case is fairly complicated. It can be simplified for large and small values of

Qg = Q/AL

6. We shall now consider the limit case when a = 0. As was shown in [1] the solution
yields in this limit case the lower estimate for the stagnation zone dimensions, it is
therefore of interest to compare it with the solution derived above for small a # 0. The
required solution may be taken directly from paper [1].
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We have

P = (2/n)Q0 + ¥° (6.1)

¥o=— 0 (1+u) (L vy dt  (6.2)

2Q 1 1 + u—1 (1 + ﬂ/e]_) vﬂ/OI eien/m + VZR/elezi‘Re/B'
Im S
t
6
(In the corresponding formula (4.23) of paper [1] the exponent in denominator had been
inadvertently omitted, and the numerator incorrectly written). Assuming here A, = %7 we
calculate

oo . 1
o 1 ( 0(u,0) du  8Q 1 1 A—t)v(B—v)  Jdu
= .S‘ a0 o—o u _:[_—S [T“ii +u S A F o8 dt] U (6.3)
1¢] 0 o

The last integral may be integrated by parts, followed by integration with respect to
v and then the order of integration changed which allows the finding of

1
° — 3V — 16V e 248 —
n:;;} =0 {v [6 —3v 1(2:+ VZZ;" + 2v4 - ¥5] [(11+ :)12 _ (ﬁvinvzs] }dv=0.45 6.4)
In order to determine the form of the stagnation zone we compute
Nim 'i—%=“%'4ﬁg‘ Sin 28 (wc:sse + 6(::549 + 24c(i>s’(-) +
+ Tsin g cost@ — 16 sing cos? 8) =M (9) 6.5)

From this we derive the expression for the stagnation zone boundary

]
2 (8) + iy(0)=2° + S %0 (0) ¢ df
(1]

or

e  AUQ T n 5 1—cos8 1—cosh i Bsin®
eO)=2"+—5 [thae+_2? cos® T T2 g cos“()]
24Q

_ o _i_sine 1 0 0
y(©0) =—7 [24 t8*0 + g~ Gostp “ES‘“°+12cosse_8cose]

(6.6)

a5

/
/ The stagnation zone limit pattern defined by
/0 Expressions (6.5) and (6.6) is shown on Fig. 4, on which

24 /

0-'7 the curves of Fig. 3 have also been drawn with mag-
23 / nitude O/ as the scale (§ == nthz/ (24 Q),
- / / M= nhy/ (24 Q)) for the make of comparison, As

/

expected, the limit solution (ae = 0) yields the lower

4
gz estimate of the stagnation zone dimensions, while for
10,5 / ag = 0.1 this estimate is already close to the solution.

ar
20"” //V E 7. An approximate method was proposed in paper
/A (6] for solving the problem of filtration with an initial
gradient which amounts to the assumption that motion
Fig. 4 in the flow area at a velocity exceeding the stipulated
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value of A conforms to the Darcy law, while the stagnation zone boundaries are found as
streamlines along which the filtration rate is equal to A. Thus stated the problem is reduced
to the solution of the Laplace equation in the area with an unknown boundary, and is readily
solved by methods known in the theory of jets,

In the case here considered it is necessary to find a solution of the Laplace equation
for the stream function i/ in the area EABCD (Fig. 1), having satisfied the complementary
condition that w = A along BC. The required expression binding z by the potential ¥ is of
the form

dz i(1+ ae®
w = 0+ Z;tk ) [VI—exp(— aW/Q) — Vo —exp (— aW/Q)]

a=(at— @ +1)  (W=H+ip, z=z+iy) (1.1)

Integrating and assuming that 1/ = 0, we obtain the looked for expression of the
stagnation zone boundary, If angle & between the boundary and the x-axis is taken as a
parameter then

z au3 —1 2ao cos 0 zao
LT T arctg ey — 5 co0sb -+

14 ag®, 14 2a95in 0 -+ ay? 2 ]

+i [ T lnl-—-2aosine+a09 —— @osinB (7.2)

It will be readily seen that the obtained solution holds for sufficiently great a, only.
In fact, when aq <1 the stream velocity at infiiity is lower than A, which is contrary to
the model here considered; for aq close to unity the stagnation zone tip receeds arbitrarily
for along the y-axis. Boundary coordinates| calculated by means of Formula (7.2) for
ay = 2 are shown by dots on Fig. 3. It is evident that the result differs considerably from
that of the exact solution.

Author expresses his appreciation to V.N. Teliiants and R.T. Pozvonkova who had
organized the computations to Formula (4.7), and T.N. Ericheva and A.E. Segalov for their
help in this work.
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